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Basic peculiarities of market price fluctuations are known to be well described by a recently developed
random-walk model in a temporally deforming quadratic potential force whose center is given by a moving
average of past price traces �M. Takayasu, T. Mizuno, and H. Takayasu, Physica A 370, 91 �2006��. By
analyzing high-frequency financial time series of exceptional events, such as bubbles and crashes, we confirm
the appearance of higher-order potential force in the markets. We show statistical significance of its existence
by applying the information criterion. This time series analysis is expected to be applied widely for detecting
a nonstationary symptom in random phenomena.
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I. INTRODUCTION

Financial bubbles and crashes have been occurring occa-
sionally in nearly every market causing social troubles of
various magnitudes. In the normal market state, prices fluc-
tuate fairly randomly and directional prediction is almost im-
possible; however, during bubbles and crashes, the market
prices are known to move quite asymmetrically �1�. Viewing
the movement of prices in a coarse-grained way reveals that
the growth of price in a bubble period is approximated either
by an exponential function �2,3�, a double-exponential func-
tion �4�, or a function having a finite-time singularity �5–10�.
In any case, it is a reasonable assumption that there are some
special mechanisms of bubbles that are quite different from
the normal market state. It is very important to develop the
technique to quantify the financial risk of large price changes
�11�.

In the year 1900, Bachelier introduced the first random-
walk model as a model of market price fluctuations �12�. The
stochastic model based on his mathematical theory was de-
veloped in the field of financial technology and it is widely
accepted in the real financial market.

In the 1990s, analysis of high-frequency tick-by-tick data
by physicist clarified that market price is not a simple ran-
dom walk �13�. The market price has some empirically styl-
ized facts, which clearly deviate from a pure random walk. In
order to build a model, which fulfills those properties, many
variants of random-walk models of market prices have been
proposed.

Recently, one of the authors �M.T.� and her group intro-
duced a type of market model called potentials of unbalanced
complex kinetics �PUCK�, wherein the market price is de-
scribed by a random walker in a temporally deforming po-
tential force whose center is given by the trace of the walker
�14–17�. This model has quite different statistical properties
from the case of the fixed potential function, i.e., the
Uhlenbeck-Ornstein process �18�. Moreover, the continuum

limit of PUCK model is shown to be equivalent to the
Langevin equation with time-dependent coefficients �19�.

From the viewpoint of this model with a quadratic poten-
tial function, market states are categorized into five condi-
tions characterized by the potential function:

�1� A pure random-walk state, which is given by the case
of no potential force. In mathematical finance, this condition
is assumed to be the generic property of the price fluctuation
of a financial market.

�2� A stable state, which is described by an attractive po-
tential force. In this case, the market price tends to be at-
tracted to the center of potential function. Corresponding
Hurst exponent, which characterizes the abnormal diffusion,
is smaller than 0.5 in short time scale and it converges to 0.5
in large time scale. Peinke and co-workers showed the exis-
tence of similar kind of attractive potential in foreign ex-
change market �20�; however, it should be noted that their
analysis is based on the fixed potential function of
Uhlenbeck-Ornstein type. Ausloos and Ivanova applied the
same method and obtained similar results for the stock index
data �21�. This model is also well known in the study of the
“mean-reverting behavior” such as the electricity market
price �22,23�. In these cases, the Hurst exponent almost con-
verges to 0 in large time scale. The PUCK with an attractive
potential function becomes an Uhlenbeck-Ornstein process
in the special case that the center of the potential function is
fixed.

�3� An unstable state, which is described by a repulsive
potential force. In this case, the market price is repelled from
the center of potential function. The corresponding Hurst ex-
ponent is larger than 0.5, in short time scale, it also con-
verges to 0.5 in large time scale.

�4� A nonstationary state, which is characterized by a too-
strong attractive force causing a divergence with the oscilla-
tion of price �24�.

�5� A nonstationary state, which is characterized by a
strong repulsive force causing nearly monotonic price
changes as a result.

The PUCK model is known to satisfy basic market statis-
tics such as the power-law distribution of price changes*watanabe@smp.dis.titech.ac.jp
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�25–28�, rapid decay of the autocorrelation of price changes
�13�, long correlation of the square of price changes �13�, and
abnormal diffusion properties �29� in a short time scale �30�.
It has been clarified that the market potential force is closely
related to the mass behavior of dealers, especially, the trend-
following behavior �31,32�. Moreover, the Nobel prize lau-
reled market model—the autoregressive conditional het-
eroskedasticity model—is derived in a very special limit
case, where a higher-order asymmetric potential force ap-
pears with randomly chosen signs at each time step �33�.

In this paper, we reformulate the data analysis method of
PUCK taking into account the higher-order potential func-
tions, and we focus our attention on finding and describing
the price changes before and during financial bubbles and
crashes. The data we analyze here, as examples, are the tick-
by-tick data of dollar-yen exchange rates, which showed the
largest rate change in 1998 and euro-yen exchange rates,
which includes the recent financial crisis of 2008.

II. PUCK MODEL

The PUCK model is represented by the following set of
equations:

P�t + 1� − P�t� = −
d

dp
U�p,t��p=P�t�−PM�t� + f�t� , �1�

PM�t� =
1

M
�
k=0

M−1

P�t − k� . �2�

Here, P�t� is the noise-reduced market price at the tth tick
obtained by applying the optimal moving average �34�, f�t�
is the random noise typically a Gaussian white noise, U�p , t�
is the potential function, which is approximated by the fol-
lowing Taylor expansion form with time-dependent coeffi-
cients bk�t�:

U�p,t� = �
k=1

�
bk�t�
k + 1

pk+1. �3�

Here, we do not include the term with k=0 in this expansion
as such a term gives the same contribution as f�t� in Eq. �1�.
PM�t� is the average of the past price changes with size M
ticks, and it is assumed that this point gives the center of the
potential function that moves with the random-walker’s foot-
print �Fig. 1�. For the dollar-yen market, a typical value of

optimal M is smaller than ten. Additional information about
the meaning of the optimal moving average M dependence
of the PUCK analysis are explained in Appendixes A and B.

In Fig. 2, we show typical examples of potential functions
observed in the dollar-yen market for given 2000 data points.
Here, the mean interval of tick is about 15 s in both cases.
The market fluctuations of Figs. 2�a� and 2�d� look very dif-
ferent intuitively; however, the square of the market price
fluctuations in unit time called the volatility takes about the
same value in both cases. More precisely, in Fig. 2�b�, we
can intuitively recognize that the market price P�t� fluctuates
around the averaged past price PM�t�. So the market price
does not fluctuate largely in long time scale. On the contrary,
in Fig. 2�e�, the market price separates from PM�t�. The large
scale price fluctuation of Fig. 2�d� is apparently larger than
the case of Fig. 2�a� even microscopic volatilities take almost
the same volatility. So we can recognize that there is insta-
bility of the market price, which we cannot quantify by the
volatility.

By applying the PUCK model, we can clearly observe the
difference in the quadratic term of the potential function, as
shown in Figs. 2�c� and 2�f�. In the case of Fig. 2�c�, the
value of b1�t� is positive and the market fluctuation is stable,
while in the case of Fig. 2�f� the value of b1�t� is negative
and market fluctuation is unstable. In both cases, there are
abnormal diffusion properties in short time scale, as shown
in Fig. 2�g� �24�. In the case of attractive potential force, it is
slower than the normal diffusion, i.e., the Hurst exponent is
smaller than 0.5 �� in Fig. 2�g��. In the case of repulsive
potential force, it is faster than the normal diffusion law, i.e.,
the Hurst exponent is larger than 0.5 �� in Fig. 2�g��. How-
ever, in both cases, the long time behavior follows the nor-
mal diffusion property, i.e., the Hurst exponent is equal to
0.5 �dotted lines in Fig. 2�g��.

From the viewpoint of the agent model, the unstable po-
tential force of market is known to be produced by dealer’s
action of trend follow, which is a kind of herding behavior,
and the stable potential force is caused by contrarians who
follow mean-reverting behavior in which “mean” is given by
the moving average PM�t�. In this case, the market potential
is strongly related to the majority strategy of dealers
�31,32,35�. Especially in the case of ordinary mean-reverting
model as mentioned in the introduction, the mean usually
takes a constant value, namely, the model corresponds to the
PUCK model in the limit of very large value of M in Eq. �2�.

Price

Time [tick]tn tn + 1

∆P1(tn)

∆P2(tn + 1) PM (t)

P (t)

P (t + 1) − P (t)

P (t) − PM(t)
∆P1(tn)

∆P2(tn + 1)

(b)(a)

FIG. 1. Schematic diagram of the PUCK model. For given market time series, we calculate P�t+1�− P�t� and P�t�− PM�t� as shown in
the �a�. The plot in �b� is proportional to the derivative of the potential function − d

dpU�p , t�.
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It is found that these quadratic potential functions can
generally be found in normal states of financial markets;
however, in particular periods, when prices move rather
monotonically we can observe a type of nonquadratic poten-
tial functions, such as a cubic function, as shown later.

In order to describe such higher-order potential functions
correctly, we take into account a higher-order term in the
potential model as follows:

U�p,t� =
b1�t�

2
p2 +

b�

� + 1
p�+1. �4�

When the market potential function is described by a cubic
function ��=2� with a local minimum point, there are obvi-
ously two states for the random walker, as shown schemati-
cally in Fig. 3. The first state is the trapped state that is
practically the same as the case of a random walk in a stable
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FIG. 2. Examples of estimated potential functions. For given dollar-yen rates, �a� and �d�, the relations between P�t� �heavy line� and
PM�t� �thin line� are observed, as shown in �b� and �e� �enlarged view of gray areas of �a� and �d��, respectively. The potential functions ��c�
and �f�� are estimated by integrating the plots of the diagram of Fig. 1�b�. In �g�, we show the diffusion of market price, ����
=���P�t�− P�t−���2	 in the cases of �a� ���, �d� ���, and pure random walk �line�.
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quadratic potential function; however, in this state, there is
an asymmetric price behavior, as shown in the trapped state
of Fig. 4, which is created by a numerical simulation with a
cubic potential model �in the case of a negative b1 and a
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FIG. 4. A result of numerical simulation by using Eq. �1� with a

cubic potential function ��=2, b1=0.2, b2=0.5, and M =5 in Eq.

�4��. In this simulation, we use a Gaussian random number with the

mean value 0 and the standard deviation �=0.2 for f�t�. In the

subwindow of this figure, we show the cubic potential used in this

simulation.
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positive b2�. Even in the trapped state, curvature of a cu-
bicpotential is not symmetric and the random walker takes
different amount of force between p�0 and p�0. As a re-
sult, the market price shows a linear trend. This kind of mar-
ket trend is observable in real market price changes, as
shown later.

For a given cubic potential function, there is a finite pos-
sibility that the walker goes over the potential barrier. The
second state is the nontrapped state, wherein the walker goes
down the potential slope indefinitely following a double-
exponential growth �36� or even the finite-time divergence in
the continuum limit. In particular, we can expect a sudden
transition of the movement of prices from a stable state to a
highly unstable state even when the market potential func-
tion is invariant �the nontrapped state of Fig. 4�. In the case
of a positive b1 and a negative b2, price transits from an
uptrend �trapped state� to a sharp double-exponential in-
crease �nontrapped state�. Unless considering a higher-order
potential term, the direction of slow trend �trapped state� and
the sharp change �nontrapped state� is the same.

We observed transition times from an ordinary market
trend to an extraordinary one by numerical simulation, the
average time increases exponentially for higher potential bar-
rier h�U�p , t��, as expected from the Arrhenius-Kramers for-
mula for random walker in a potential function �37�. From
these results, the cubic potential is expected to describe both
usual market trends and extraordinary market states such as
financial bubbles and crashes.

Bouchaud and Cont proposed a similar idea of nonlinear
Langevin equation for modeling stock market crashes �38�.
They assume that the variation in the market price change is
described by a Langevin model with a cubic velocity poten-
tial. However, there is a big difference between their model
and the PUCK model. In the formulation of PUCK model,
the center of the potential force is given by the moving av-
erage and the potential function is always shifting with the
motion of the moving average. Also they did not consider the
deformation of potential function.

III. ESTIMATION OF OPTIMAL POTENTIAL FUNCTIONS

For estimating the optimal potential function from real
data, we need to consider the meaning of probability distri-
bution of the independent random variable f�t� in Eq. �1�.
From a skeptical viewpoint about the existence of the poten-
tial forces, one might think that any price movement can be
fully described by only the random noise term f�t�, assuming
that f�t� takes extremely asymmetric values repeatedly by
chance. This case is theoretically realizable; however, the
probability of the occurrence of the whole event, which is
estimated by the products of probability density of f�t�, be-
comes negligibly small for the cases of bubbles or crashes.
This is confirmed systematically in the following manner.

For the given symmetric probability distribution of f�t�,
w�f�t��, we can calculate the probability of the occurrence of
any time series by assuming that the process is governed by
Eq. �1� with the potential function given by Eq. �4�, and the
parameters of the model are constants, namely, b1�t�
=b1 ,b��t�=b�, in the period from t=n−N+1 to n. The prob

ability of the occurrence or the likelihood of a given market
price time series 
P�n� , P�n−1� , . . . , P�n−N+1�� is calcu-
lated by the following equation:

l�b1,�,b�,M� = �
t=n−N+1

n

w�f�t�� , �5�

where each value of f�t� is determined from Eq. �1� with
Eq. �4�. As for the functional form of the probability den-
sity of f�t�, we apply the Gaussian distribution with zero
mean.

In statistics, this type of maximum-likelihood method is
very popular, and the method of choosing the optimum num-
ber of parameters has already been established. In general, a
model with more parameters has a greater tendency to re-
ceive a higher value of likelihood. In order to solve an over-
fitting problem and to evaluate which of the two models with
different number of parameters is better, we should not use
the likelihood itself but apply the information criterion called
Akaike information criterion �AIC� that is composed of the
logarithm of likelihood and the term of penalty, which de-
pends on the number of parameters k �39�,

IAIC = − 2 ln l�b1,�,b�,M� + 2k . �6�

We can determine the most appropriate parameter values of
the potential function systematically by searching the small-
est value of the AIC.

We compare the value of AIC for different values of k.
The case of k=0 corresponds to a pure random-walk model,
that is, M =1 and U�p , t�=0 in Eq. �1�. The basic PUCK
model belongs to the case of k=2, as there are two param-
eters M the moving average size and b1�t� the coefficient of
the quadratic potential term. The cubic potential is intro-
duced in the case of k=2 or 3, in which a higher-order po-
tential term’s coefficient b��t� is included as a new param-
eter. In the case of k=2 �only cubic term� or 3 �both
quadratic and cubic terms�, we consider all terms up to the
fourth order of potential function. For each case of k, we find
the combination of parameters, which makes the AIC mini-
mum, as typically shown in Fig. 5 that is applied for the
period �b� in Fig. 6.

In the contour plots of Figs. 5�a� and 5�c�, we show the
values of AIC of each parameter sets, as shown by the color
scale of right sides of each figure. In Fig. 5�a�, we show the
values of AIC in the parameter sets of b2 and b1 in the case
of M =4. We can get a minimum AIC value when the param-
eters are b2=4.0, b1=0.0, and M =4 �� in this figure�. Ob-
serving the cross-sectional diagram, as shown by the dotted
line in Fig. 5�a� �b1=0.0 and M =4�, we can observe the
minimum point of AIC �Fig. 5�b��. In Fig. 5�c�, we show the
contour plot of AIC between b2 and M in the case of b1
=0.0. From this figure and its cross-sectional diagram in the
cases of b1=0.0 and b2=4.0, as shown in Fig. 5�d�, the value
of AIC becomes minimum when the value of M =4. From
these results, we may say that the cubic potential is most
appropriate to describe the market price change in Fig. 6
�2b�. As mentioned above, we search the optimal model to
minimize the value of AIC.
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Here, we observe two examples of our analysis applied to
financial markets. The first example is dollar-yen exchange
rates from September 23rd to October 26th in 1998 �as
shown in Figs. 6 �1��, during this period the dollar-yen mar-
ket showed historically the largest fluctuations. In Fig. 6 �3a–
3c�, we show a directly observed potential function from the

data in four periods, which are shown in Fig. 6 �2a–2c� with
each window size N=2000 ticks. Additional information
about N dependence of the PUCK analysis is explained in
Appendix C. In Fig. 6 �4a–4c�, we plot the minimum AIC
values in the cases of pure random-walk model �random�, the
quadratic potential model �quadratic�, the cubic potential
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model �cubic�, and the quartic potential model �quartic�.
From these figures, we can estimate the optimal potential
form to describe the market price changes.

In the period denoted as “a” in Fig. 6 �1�, the market price
fluctuates rather stably, as shown in Fig. 6 �2a�. In this case,
the simple random-walk model with k=0 is the worst model

in view of AIC and the higher-order models are slightly be-
hind the parabolic potential function with k=2 �Fig. 6 �3a��.
From these results, the most likely potential function is given
by the quadratic function shown in the Fig. 6 �4a�.

In period “b” we can clearly find a sharp drop in the latter
half of Fig. 6 �2b�, and the cubic potential model becomes
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FIG. 7. Estimated optimal potential forms by the minimum information criterion procedure in the euro-yen exchange rates in September
of 2008 �1�. �2� Time series of market price in period a, b, and c is shown. �3� The minimum AIC values, min IAIC, in the cases of pure
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most optimal, as shown Fig. 6 �3b�. The resulting most
optimal potential function is given in Fig. 6 �4b�, which
is a quadratic function with a shallow well �Fig. 6 �4b��.
Similarly, in period “c” the main crash was over; how-
ever, the market is quite turbulent as shown in Fig. 6 �2c�.
The best model in this case is given by the quadratic po-
tential function �Figs. 3�c� and 6� and its shape is shown in
Figs. 6 �4c�.

In Fig. 7, we observe the other example of euro-yen ex-
change rates from September 1st to 10th of 2008, during this
period euro-yen exchange rates largely fluctuated, which was
just before the breakdown of Lehman Brothers, September
15th. In the period “a” in Fig. 7 �1�, the exchange rates
decrease rather monotonically as shown in Fig. 7 �2a�. The
AIC value takes the smallest value by a cubic potential
model, as demonstrated by Fig. 7 �3a�, and the resulting best-
estimated cubic potential function is given in Fig. 7 �4a�. For
the rest of cases of periods “b” and “c,” the potential func-
tions are also estimated in the same way.

For further check of the method of information criterion,
we also apply another information criterion called the Baye-
sian information criterion �BIC� �40�. Compared with AIC
given by Eq. �6�, this criterion modifies the penalty function
with respect to the number of parameter k as a function of
the number of data points N, as follows:

IBIC = − 2 ln l�b1,�,b�,M� + k ln�N� . �7�

We also take into account the effect of distribution function
of f�t� other than the normal distribution. For this purpose,
we apply the empirically estimated price change distribu-
tions, as shown in Figs. 8�a� and 8�b� for dollar-yen and

euro-yen markets, which have fat tails approximated by
power laws. Namely, we compare the results of optimal po-
tential parameters with four types of analyses, i.e., AIC with
the normal distributions of f�t�, BIC with the normal distri-
bution, AIC with the fat-tailed distribution, and BIC with the
fat-tail distribution.

In Tables I and II, the values of estimated optimal param-
eters of Figs. 6 and 7 are compared in each combinations of
the information criterions and the distribution of f�t�. In any
combinations and periods, we can get similar results of op-
timal parameter sets. As shown here, all major results men-
tioned in this paper are confirmed to be independent of the
methods of analyses.

These results imply that the PUCK model with quadratic
and cubic potential functions are suitable for describing these
foreign exchange markets. Especially in the cases when cu-
bic potential appears, the market price tends to move in the
direction that the potential function declines. In Appendix E,
we show more detail information about the statistical prop-
erties of market price changes when a cubic potential ap-
pears.

IV. DISCUSSION

In this paper, we presented a higher-order potential model
suitable for the analysis of the market forces observed in
financial bubbles or crashes. In order to show the statistical
significance of the existence of higher-order potential func-
tions, we applied the information criteria AIC and BIC. In
the given examples, clear cubic potential functions were de-
tected in the periods including crashes.

Similar higher-order potential functions can be confirmed
in many other examples before and during bubbles and
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FIG. 8. Probability density function �PDF� of price changes �P�t�− P�t−1�� in the cases of dollar-yen exchange rates of 1998 �a� and
euro-yen exchange rates of 2008 �b�. We apply these empirical distributions as the case of fat-tailed distribution f�t�. In either case, the dotted
line shows the normal distribution with the same mean and variance.

TABLE I. Estimated values of b1, b2, and M in the three periods in Fig. 6. In this table, we show the optimal parameters by using the
AIC with normal distribution, the BIC with normal distribution, AIC with fat-tail distribution, and BIC with fat-tail distribution.

Period

AIC with normal dist. BIC with normal dist. AIC with fat-tail dist. BIC with fat-tail dist.

b1 b2 M b1 b2 M b1 b2 M b1 b2 M

a 0.1 0.0 9 0.1 0.0 9 0.1 0.0 9 0.1 0.0 9

b 0.0 4.0 4 0.0 4.0 4 0.0 4.0 4 0.0 4.0 4

c −0.6 0.0 2 −0.6 0.0 2 −0.6 0.0 2 −0.6 0.0 2
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crashes of financial markets. However, we cannot say that we
can always observe the cubic potential function before the
financial crisis.

Application of the method we developed in this paper is
not limited to financial market data. As known from the for-
mulation, this method is applicable to any time series, show-
ing random-walk-like behaviors. For examples, medical data
from patients, machine condition data in factories, environ-
mental, and climate data are promising candidates for apply-
ing this method for early detection of nonstationary symp-
toms.
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APPENDIX A: OPTIMAL MOVING
AVERAGE PROCEDURE

In the PUCK analysis, we apply the optimal moving av-
erage as a pretreatment to given raw data Pr�t� when the data
show nonzero autocorrelation of price difference �P�t�
= P�t�− P�t−1� or if outliers are included. An example of raw
data’s autocorrelation C�T�= ��P�t+T��P�t�	 / ��P�t�2	 is
shown in Fig. 9. There is a strong negative autocorrelation at
1 tick, which represents zig-zag behaviors in the time series
of raw data, the dotted line in Fig. 10�a�. Without the pre-
treatment, we observe a strong attractive potential function,
as shown in Fig. 10�b� by the PUCK analysis. This attractive
potential is generally very strong; however, this potential
works only for zig-zag behaviors of market price in the very
short time scale. In order to observe potential functions for

longer time scale, we need to smooth out such short-time
fluctuation.

For the elimination of such short scale correlated fluctua-
tion, we introduce the optimal moving average given by the
following equations �34�:

P�t� = �
j=1

s

	 jPr�t − j� , �A1�

Pr�t� = P�t� + 
�t� . �A2�

Here, P�t� denotes the smoothed data, 
	 j� are the weights,
which are determined by minimizing the square prediction
variance �
�t�2	 through solving the following Yule-Walker
equation, which is familiar in the field of time series analysis
based on autoregressive models. For the tick data of foreign
exchange markets, 
	 j� is negligibly small for j�15,

�
�t�2	 =�Pr�t� − �
j=1

s

	 jPr�t − j��2� , �A3�

�
�0 �1 ¯ �s−1

�1 �0 ¯ �s−2

] ] � ]

�s−1 �s−2 ¯ �0

��
	1

	2

]

	s

� = �
�1

�2

]

�s

� . �A4�

Here, the autocovariance � j is defined as

� j = ��Pr�t� − �Pr�t�	��Pr�t + j� − �Pr�t�	�	 . �A5�

The thick line in Fig. 10�a� shows the smoothed market price
and the autocorrelation of 
�t� almost vanishes, as shown in
Fig. 9. The potential function estimated by the PUCK analy-
sis for this smoothed price is shown in Fig. 10�c�. This un-
stable quadratic potential function cannot be observed with-
out the pretreatment.

It should be noted that there are cases that this pretreat-
ment is not necessary when the autocorrelation of raw data
almost vanishes like the deal data of electronic broking sys-
tem �EBS�, which is one of the world’s largest computer
trading systems in foreign exchange markets �41�. In such a
case, the smoothed market price and the raw data are almost
identical.

TABLE II. Estimated values of b1, b2, and M in the three periods in Fig. 7. In this table, we show the optimal parameters by using the
AIC with normal distribution, the BIC with normal distribution, AIC with fat-tail distribution, and BIC with fat-tail distribution.

Period

AIC with normal dist. BIC with normal dist. AIC with fat-tail dist. BIC with fat-tail dist.

b1 b2 M b1 b2 M b1 b2 M b1 b2 M

a 0.0 2.3 8 0.0 2.3 8 0.0 4.1 2 0.0 4.1 2

b 0.0 2.4 6 0.0 2.4 6 0.0 2.4 3 0.0 2.4 3

c −0.1 0.0 9 −0.1 0.0 9 −0.1 0.0 6 −0.1 0.0 6
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FIG. 9. Autocorrelation of raw price difference Pr�t�− Pr�t� ���
and the noise term 
�t� ���.
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APPENDIX B: M DEPENDENCE
OF THE POTENTIAL FUNCTION

In PUCK analysis, we need to determine the value of
moving average size M of PM�t�, the center of the potential
force. As seen from Fig. 11�a�, the strength of potential force
depends on the value of M. For the case of quadratic poten-
tial functions, it is known that the potential functions U�p , t�
in various values of M collapse into one potential function
by multiplying M −1, as shown in Fig. 11�b� �14�. In such a
case, the quadratic potential coefficient b1 can be estimated
nearly independent of M. In general case, however, this type
of scaling relation does not hold and estimation of the best
value of M is necessary.

APPENDIX C: N DEPENDENCE
OF THE POTENTIAL FUNCTION

The potential function observed by the PUCK analysis
generally depends on the observation window size N. In
Fig. 12, we show examples of potential functions observed
with different values of N. As indicated in these figures, we
observe four window sizes N=200 ticks, N=2000 ticks,

N=6000 ticks, and 24 000 ticks. In Fig. 13, we show the
difference of optimal AIC values between the cubic model
and the other models �IAIC. The value of �IAIC represents
probabilistic advantage of the cubic model to the other mod-
els. If �IAIC is positive, the cubic model is not superior to the
other models. We search the value of N, which makes �IAIC
smallest.

Figure 12 �2a� shows the case of N=200 ticks, which
corresponds to about an hour in real time scale. We can ob-
serve a cubiclike potential function, however, scattering of
data points is large and statistical significance is not high
enough, i.e., �IAIC is larger than other cases. In Fig. 12 �2b�,
the case of N=2000 ticks is shown. Here, we can clearly
observe a cubic potential function with high statistical sig-
nificance, as confirmed in Fig. 13. In the cases of Fig. 12 �2c
and 2d� with N=6000 and N=24 000 ticks, which corre-
spond to about over a day or a week in real time scale, we
observe an unstable quadratic potential function. For such
large window sizes, we observe an averaged potential func-
tion, so that the potential function tends to be weaker and
more symmetric. Actually in Fig. 13, the values of �IAIC
become large again. Therefore, we know that we can opti-
mize the window size N as 2000 for this time series.
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APPENDIX D: TIME EVOLUTION
OF POTENTIAL FUNCTION

Time evolution of quadratic potential function is known
to be well approximated by the Ornstein-Uhlenbeck process.
The PUCK model with this stochastic motion of b1�t� satis-
fies basic stylized facts such as the power-law distribution of
price changes, rapid decay of the autocorrelation of price
change, long correlation of volatility, and abnormal diffusion
properties in a short time scale �30�. Moreover, the potential
coefficient is strongly related to the mass behavior or strat-
egy of market dealers. It is also important to observe how the
parabolic potential changes to the cubic potential.

Here, we particularly focus on the transition process from
the quadratic potential to the cubic one. In Table III, we
calculate the transition probabilities that a stable quadratic
potential b1�0 changes to the cubic potential and an un-
stable quadratic potential changes to the cubic potential in
the case of dollar-yen exchange rates in 1998. The transition
probability is largest from an unstable quadratic potential.
Transition from a cubic potential state is also analyzed and
the results are summarized in the right hand of Table III. The
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FIG. 12. Examples of N dependence of potential function. We show directly observed potential functions ��� from the data of 200 ticks
�b1=0.1, b2=8.3, and M =4 in period �a��, 2000 ticks �b1=0.0, b2=4.0, and M =4 in period �b��, 6000 ticks �b11=0.1, b2=0.8, and M =4 in
period �c��, and 24 000 ticks �b1=0.0, b2=0.0, and M =4 in period �d��.

-25

-20

-15

-10

-5

0

6000400020000

∆
I A

I
C

N

FIG. 13. Example of N dependence of �IAIC= IAIC
opt ��=2�

− IAIC
opt ���2� in the case of Fig. 12. At this point, IAIC

opt ��=2� shows

the optimal value of AIC of cubic model. IAIC
opt ��=0� shows the

optimal AIC of random walk. IAIC
opt ��=1� shows the optimal AIC of

quadratic model. We can evaluate probabilistic advantage of the

cubic model by this value.

RANDOM WALKER IN TEMPORALLY DEFORMING HIGHER-… PHYSICAL REVIEW E 80, 056110 �2009�

056110-11



transition probability is largest also to an unstable quadratic
potential state.

APPENDIX E: STATISTICAL PROPERTIES
OF MARKET PRICE CHANGES WHEN

A CUBIC POTENTIAL APPEARS

By using the dollar-yen exchange rates of 1998 �Fig.
14�a�� and the euro-yen exchange rates of 2008 �Fig. 14�b��,
we calculate the probability densities of price changes when
cubic potential functions are observed. In Fig. 15, the prob-
ability density of price changes, �P�t , t−N�= P�t�− P�t−N�
are plotted for the window size N under the condition that the
cubic potential is detected in the same time interval �t
−N , t�. The numbers of events we observed clear cubic po-
tential functions are about 700 in the year 1998 and about
600 in the year 2008.

In the case that the coefficient of cubic potential function
is negative b2�t��0, the peak of the probability density of
price change p��P�t , t−N��b2�t��0 �line with �� shifts to
positive, and in the case b2�0, the probability density
p��P�t , t−N��b2�t��0 �line with �� shifts to negative, as
shown in Figs. 15�a� and 15�b�. For comparison, the prob-
ability densities of price changes in the interval N ticks for

all data are plotted by the dotted lines with �, which are
almost symmetric in both cases. As the coefficient b2 is es-
timated using the data in the interval �t−N , t�, these results
show that the cubic potential and the net price change in the
observation interval are strongly related.

Next, we check the correlation between the future market
price change and the cubic potential function. We observe
the price change at T ticks after t, �P�t+T , t�= P�t+T�
− P�t�, under the condition that a cubic potential function is
detected in the time interval �t−N , t�. We count the following
numbers of events. Let S��+ �T� be the number of events in
which �P�t+T , t��0 with b2�t��0, S��− �T� be the number

TABLE III. Transition probabilities from three states �a stable quadratic potential, a pure random walk �no
potential�, and an unstable quadratic potential� to a cubic potential state, and the transition probabilities from
a cubic potential state to the three states in the case of dollar-yen exchange rates of 1998. The total number
of samples is 693. We define the cubic potential as the cases in which b2�0 �or b2�0� continuously over
100 ticks.

Before Transition probability Transition probability After

Stable quadratic 0.146 0.130 Stable quadratic

Pure random walk 0.333 ⇒Cubic⇒ 0.315 Pure random walk

Unstable quadratic 0.521 0.555 Unstable quadratic
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FIG. 14. Time series of dollar-yen exchange rates of 1998 �a�
and the euro-yen exchange rates of 2008 �a� from March until the
end of December. In each case, market prices tend to decline in the
latter.
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from 0. The market prices fluctuate with a trend, which is given by
the slope of the cubic potential function.
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of events in which �P�t+T , t��0 with b2�t��0, S��+ �T� be
the number of events in which �P�t+T , t��0 with b2�t�
�0, and S��− �T� be the number of events in which �P�t
+T , t��0 with b2�t��0. From these quantities, we calculate
the probabilities that the direction of slope of cubic potential
function agrees with the future price change ���T� and
���T�, which are defined by the following equations:

���T� =
S��+ �T�

S��+ �T� + S��− �T�
, �E1�

���T� =
S��− �T�

S��+ �T� + S��− �T�
. �E2�

The values of ���T� ��� and ���T� ��� are plotted for vari-
ous values of T in Fig. 16, in the cases of dollar-yen ex-
change rates of 1998 �Fig. 16�a�� and euro-yen exchange
rates of 2008 �Fig. 16�b��. In both exchange rates, there are
large crashes of market price in the latter half of the year.
The error bars denote the two-sided 95% confidence interval
by assuming an independent binomial distribution of price
up or down. In both cases, the values of ���T� and ���T� are
significantly larger than 0.5, the value for pure random case,
for T smaller than 2000 ticks, which corresponds to several
hours in physical time. For a longer time scale, the random
nature prevails in any case.
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